Memo

Annex

Project	New Central Urban Waterfront and MEDIASPACE in Aarhus Design competition
Subject	Geotechnical note

In connection with the planning of building on Bastion Syd the Municipality of Aarhus has commissioned a geo-technical placing investigation. The investigation has been carried out by the company GEO and the results have been presented in:

Port of Aarhus (Århus Havn) Building on the Royal Quay (Bebyggelse på Honnørkajen) GEO project no. 28705. Report 3, 2006-11-22

11

This note contains a summary of the results of the geo-technical investigation, including guiding pile carrying capacity in the various landfill sites as well as geo-technical parameters.

The general conclusion is that the ground conditions are so unfavourable that for building, which does not permit subsidence, piling must be carried out. This will also apply to land which has been reclaimed.

The general layering is fill to level -3 m to -8.5 m. The fill mainly consists of sand to the east of the old pierre-perdue, see Figure 1, and of sand and clay to the west of the pierre-perdue. Below the fill there is a layer of very fat tertiary clay. The estimated level contours for the clay layer are given in Figure 2.

A view of the area and the building field as defined in the quality handbook are shown in Figure 1. The presentation of the building field is part of the architects' competition and the drafted area is only intended as a guide.

RAMBOLL

Figure 2: Estimated top of tertiary clay. Source: GEO Århus Havn, Honnørkajen, project no. 28705 encl. 94

GEO has presented guiding pile carrying capacities in the prepared geo-technical report 28705, see Table 1 to Table 3. A detailed design must be carried out based on the actual project. Please note that the existence of very fat, tertiary clay requires that the piling project is treated as extended pile classification.

Table 1: Land area to the east of the pierre-perdue, cf. Figure 1. The piling depth is given in m below the top of the carrying tertiary clay layer, the levels of the clay layer are drafted in Figure 2.

Piling donth holow top of	Calculated carrying capacity			
tortiary clay layor	No as	sphalt	Asphalt	
tertiary clay layer	25 x 25 cm pile	30 x 30 cm pile	25 x 25 cm pile	30 x 30 cm pile
8 m	190 kN	230 kN	390 kN	470 kN
9 m	260 kN	320 kN	440 kN	530 kN
10 m	400 kN	490 kN	540 kN	660 kN
11 m	550 kN	660 kN		770 kN
12 m		830 kN		900 kN

Table 2: Land reclamation area to the east. The piling depth is given in m below the top of the carrying tertiary clay layer, the levels of the clay layer are drafted in Figure 2

Diling donth holow top of tortiony	Calculated carrying capacity			
clay layor	Asphalt			
ciay layer	25 x 25 cm pile	30 x 30 cm pile		
11 m	160 kN	200 kN		
12 m	300 kN	370 kN		
13 m	440 kN	540 kN		
14 m		710 kN		

Table 3: Area to the west of the pierre-perdue. The piling depth is given in m below the top of the carrying tertiary clay layer, the levels of the clay layer are drafted in Figure 2

Piling donth below ton of tertiary	Calculated carrying capacity		
clay layer	Asphalt		
	25 x 25 cm pile	30 x 30 cm pile	
7 m	310 kN	370 kN	
8 m	380 kN	460 kN	
9 m	440 kN	540 kN	
10 m	540 kN	660 kN	
11 m	640 kN	770 kN	
12 m		900 kN	

In GEO project No. 28705 are also mentioned guiding characteristic parameters of strength and density for usage in connection with earth pressure calculations.

	f'/f _{pl}	<i>C_u / C'</i>	g / g′
Mixed fill	25 °	0 / 0 kN/m²	18 / 10 kN/m³
Existing sand fill	35 °	0 / 0 kN/m ²	18 / 10 kN/m ³
Pumped sand fill	35 °	0 / 0 kN/m ²	18 / 10 kN/m ³
Very fat clay fill	15 °	40 / 4 kN/m ²	18 / 8 kN/m ³
Tertiary clay	15 °	80 / 8 kN/m ²	18 / 8 kN/m ³
Gyttja (active side)	30 °	30 / 0 kN/m ²	14 / 4 kN/m ³
Gyttja (passiv side)	13 °	30 / 0 kN/m ²	14 / 4 kN/m ³

Table 4: Parameters of strength and density

Normally, only c' is used for calculation of the passive earth pressure. During the detailed design it may be considered whether c' may be used for some calculations of the active side.